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Motivation and Significance

• Dentin is the most abundant mineralized 
tissue in teeth, and is critical for structural 
integrity

• Fracture and fatigue properties of dentin 
are an issue of obvious clinical relevance

• Non-carious notches in exposed root 
surfaces are sites for fracture and fatigue 
cracking

• Very few fracture mechanics based 
studies reported in archival literature

• Mechanical properties of dentin have 
implications for other mineralized tissues, 
such as bone
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Objectives

• Measure the mechanical properties, specifically fracture 
toughness, fatigue  and subcritical crack-growth properties, of 
dentin, as a function of orientation

• Characterize the micro-mechanisms of fracture in terms of the 
underlying features, and anisotropy, of the microstructure

• Identify and model the salient toughening mechanisms in dentin

• Establish a mechanism for the fatigue of dentin

• Develop a physical basis for a damage-tolerant life-prediction 
methodology for teeth



Microstructure of Dentin

• Distinctive feature are 1-2 µm dia. 
cylindrical tubules, running from the 
dentin-enamel junction to the soft, 
interior pulp

• Hydrated composite of nanocrystalline
carbonated apatite mineral (~45% vol.), 
collagen fibrils (~30% vol.) and fluid 
(~25% vol.)

• Mineral crystallites (5 nm thick) 
distributed in a scaffold of collagen 
fibers (50-100 nm dia.)

• Collagen fibrils form a planar felt-like 
structure oriented perpendicular to the 
tubules

• A simplified model for other mineralized 
tissue, such as bone?

10 µm

Kinney, Marshall & Marshall, Crit Rev Oral Biol, in press (2003)



Fracture and Fatigue of Dentin: Objectives

• What effect do the tubules have, either by blunting or deflecting cracks?

• Can the collagen fibrils promote crack bridging?

• Are there other salient toughening mechanisms?

• What is the macroscopic fracture toughness of dentin?

• What is the local criterion for fracture in dentin? 

• Does the highly directional nature of the microstructure affect the 
toughness and crack growth?

• Mechanistically, what are the origins of toughness in dentin?

• What is the nature of inelasticity (“yielding”) in dentin?

• What is the nature of fatigue and cyclic damage in dentin?



Fracture Toughness of Dentin

• Rasmussen et al., (1976 & 1984)
- first study of the toughness of dentin approach 
- found an orientation dependence on toughness – material was tougher 

parallel to tubules than perpendicular to tubules 
- toughness was measured by “work of fracture”; results are size and

geometry dependent

• el Mowafy et al., (1986)
- first fracture-mechanics based study - using C(T) samples 
- measured Kc = 3.08 MPa√m for fracture parallel to tubules
- overestimate of toughness as notched, not precracked, sample used

• Ruse et al., (2001)
- used so-called “Notchless Triangular Prism” technique
- reported orientation-dependent values of Kc = 1.13 - 2.02 MPa√m
- non-standard test configuration



Fracture Toughness – Notch vs. Precrack
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Imbeni, Nalla, Bosi, Kinney & Ritchie, J Biomed Mater Res, in press (2003)

Definite effect of precrack acuity on Kc:

• Notch toughness      = 2.7 MPa√m (s.d. 0.1)
320 J/m-2 (s.d. 0.4)

• Precrack toughness = 1.8 MPa√m (s.d. 0.1)
140 J/m-2 (s.d. 0.4)
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Estimation of Critical Flaw Sizes
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• Lower estimate of Kc < 2 MPa√m
significantly reduces the critical flaw 
size in dentin

• For comparison:
- dental cements Kc ~ 0.1-0.5 MPa√m

- amalgams Kc ~ 0.1-1.6 MPa√m

- dental composites Kc ~  0.6-2.0 MPa√m

• However, catastrophic fracture is not 
the only problem - subcritical crack 
growth, e.g., by fatigue, is also an 
issue

• Life prediction based on time (or 
cycles) for flaws to grow subcritically 



Stress- vs. Strain-Controlled Fracture

• Fracture of mineralized tissue invariably modeled as strain-controlled

• However, there is no experimental support for this hypothesis
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For fracture at a notch in a material displaying some degree of inelasticity
• stress-controlled fracture: initiates ahead of the notch
• strain-controlled fracture: initiates at the notch



Double-Notch Four-Point Bend Test

• Two identical notches in a four-point bend bar

• Constant bending moment on both notches

• One notch breaks - the other freezes local 
microstructural events just prior to fracture

• A good way to obtain stable cracks in dentin

• Crack initiation directly at the notch root provides definite evidence that fracture 
in dentin is strain-controlled

Nalla, Kinney & Ritchie, J Biomed Mater Res, in press (2003)
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Nature of Inelasticity in Dentin

Inelastic deformation results from:

• plastic deformation (in the collagen fibrils)

• microdamage (at the peritubular cuffs)

• poro-elasticity (from fluid in the tubules)
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Plastic Damage vs. Brittle Damage

• Finite element simulation, using NIKE3D, of deformation by plasticity, using Plastic 
Damage (PD) model (Niebur et al., 2000), and microcracking, using Brittle Damage (BD) 
model (Govindjee et al., 1995)

• For both pressure-insensitive plasitcity and pressure-sensitive microcracking, notch-field  
stress and strain distributions are qualitatively similar

Nalla, Stölken, Kinney & Ritchie, J Biomech, in review (2003)
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Toughness of Dentin – Effect of Orientation

Nalla, Kinney & Ritchie, Biomater, in review (2003)
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Anisotropy in Toughness in Dentin

Nalla, Kinney & Ritchie, Biomater, in review (2003)
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Toughening Mechanisms in Dentin

Nalla, Kinney & Ritchie, Biomater, in review (2003)
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X-Ray Computed Tomography

Kinney, Nalla & Ritchie, unpublished research (2002)

• clear three-dimensional evidence of uncracked ligament bridging

imaged at the Stanford Synchrotron Radiation Laboratory - SSRL, Stanford Linear Accelerator Center - SLAC



Toughening Mechanisms in Bone

Crack Deflection
Kd ~ 2.7 MPa√m (transverse)

Fibril Bridging
Kb

f ~ 0.07 MPa√m (anti-plane longitudinal)

Uncracked Ligament Bridging
Kb

ul ~ 0.3 MPa√m (in-plane longitudinal)

Nalla, Stölken, Kinney & Ritchie, J Biomech, in review (2003)
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Toughening Mechanisms

Crack Deflection

Microcracking
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k1(α) = c11(α) KI + c12(α) KII
k2(α) = c21(α) KI + c22(α) KII

Kd = (k12 + k22)1/2

(Bilby et al., 1978; Cottrell & Rice, 1980)
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(Evans & Fu, 1985: Hutchinson, 1987)
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(Evans & McMeeking, 1986)
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Fatigue of Dentin

• Tonami et al., (1997)
- 105-cycle tensile fatigue strength measured for bovine dentin
- Fatigue strength of 47-51 MPa found: lower value for older animals 
- Tests only over narrow range of purely tensile load ratios, R ~ 0.15-0.25
- tests conducted at 37°C in water; demineralization concerns
- test duration too short; typical teeth loaded more than 106 times annually

• Arola et al., (2002)
- preliminary crack-growth data for bovine dentin
- zero-tensile (R ~ 0) cycling at 25 Hz in a saline bath at 21°C
- rates of fatigue-crack growth highest perpendicular to the tubules

•• Absolutely no data on human dentinAbsolutely no data on human dentin



Stress-Life (S/N) Approach

• cantilever-beam geometry

• all tests in conducted in Hank’s Balanced Salt Solution (HBSS)

• all tests performed on an ELF 3200 series acoustic testing machine 
(EnduraTEC Inc., Minnetonka, MN)

• three frequencies, 2 Hz, 10 Hz, 20 Hz;  wide range of load ratios, R = -1 to 0.5

Nalla, Imbeni, Kinney, Staninec, Marshall & Ritchie, J Biomed Mater Res, in press (2003)
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S/N Results on Human Dentin

• clear evidence of a susceptibility of human dentin to fatigue 

• “metal-like” fatigue S/N behavior with frequency-dependent fatigue limit at 106-107

cycles of ~25 and 45 MPa

• fatigue lives, in terms of cycles to failure are shorter at lower frequency
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Fractography

• Morphology of the fracture surfaces 
during fatigue-crack propagation 
essentially identical to overload 
(catastrophic) failure
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Effect of Mean Stress (Load Ratio)

• cantilever bending

• R ratios: 0.1, 0.5 and -1

• 10 Hz, 37°C, HBSS
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Orientation Effects

10 µm

tubules

• microstructure affects both LCF and HCF behavior

• lower fatigue limits for parallel, as compared to perpendicular, orientation

• orientation effect in fatigue contrary to that seen for toughness
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Fatigue-Crack Growth in Human Dentin

• Paris power-law relationship, da/dN = C ∆Km, where exponent m ~ 8.76

• Estimated fatigue threshold, ∆KTH ~ 1.06 MPa√m, ~60% of the fracture toughness
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• decay in stiffness used to 
estimate crack lengths



Damage-Tolerant Lifetime Prediction
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• Integrating the Paris equation, from an initial, ao, to final, ac, crack size:

• for initial flaw size, ao ~ 100 µm, 
projected life at σapp ~ 20 MPa over a 
billion cycles

• for a 600 µm flaw, projected life drops to 
~3.6 million cycles, or 3 to 4 years

• for a 900 µm flaw, projected life as low 
as a few months 

• for in vivo stresses of 5-20 MPa, small 
flaws in teeth, ~ 250 µm, will not radically 
affect their structural integrity, as 
predicted fatigue lifetimes exceed patient 
lifetimes



Summary

• First accurate fracture toughness of human dentin measured.

• Critical fracture event in dentin consistent with a strain-based criterion.

• Effect of orientation on toughness defined; lowest toughness  measured for 
fracture perpendicular to dentinal tubules.

• Toughness in dentin arises from extrinsic toughening mechanisms: collagen 
fibril and uncracked ligament bridging, microcracking, crack deflection.

• Human dentin shown to be susceptible to fatigue failure.

• “Metal-like” S/N behavior seen, sensitive to both frequency and mean stress, 
with a 106-107 cycle fatigue limit of 25-45 MPa.

• Rudimentary life-prediction analyses indicates that flaws of up to 250 µm in 
size will not radically affect structural integrity under typical physiological 
loads.


